

Mechanisms of Coagulation:

The principles, the science and what they mean to cheesemakers

Paul S. Kindstedt
Department of Nutrition and Food Sciences
University of Vermont

What are casein micelles?

Adapted from: Horn, D. 1998. International Dairy J. 8:171-177

Kappa casein

What are casein micelles?

Adapted from: Horn, D. 1998. International Dairy J. 8:171-177

Mechanisms of coagulation

- "Rennet (rapid: 30 60 min)
- " Acid (slow: 5 24 hr)
- " Acid-rennet (slow: 12 -24 hr)
- " Acid-heat

What is rennet?

- "General term for enzymes used to coagulate milk
- "Technically restricted to enzymes derived from ruminant stomachs
- " All are protein degrading enzymes (proteinase, protease, proteolytic enzyme)
- " All are members of the aspartic proteinase family

All aspartic proteinases have 2 characteristics in common

Source: *after* Crabbe, M.J.C. 2004. Rennets: General and molecular aspects *In* Cheese: Chemistry, Physics and Microbiology, Elsevier Academic Press, London

Kappa casein is uniquely vulnerable to the action of aspartic proteases

Rennet cleavage of kappa casein

Rennet coagulation occurs in two phases

- 1. Enzymatic
- 2. Non-enzymatic

1. Enzymatic phase: cleavage of -casein

Adapted from: Horn, D. 1998. International Dairy J. 8:171-177

1. Enzymatic phase: cleavage of -casein

Kappa-Casein with exposed polar region

2. Nonenzymatic phase: Ca⁺⁺ induced aggregation

2. Nonenzymatic phase: aggregation of casein micelles

(commences after 80-90% cleavage of □-casein)

2. Nonenzymatic phase continued: chain formation/flocculation

Matrix rearrangement

Fine matrix - small pores, weak gel

coarse matrix - large pores, firm gel

Repercussions of matrix rearrangement

- " Cheese moisture content
- " Acid development during cheese making
- " Cheese yield

Matrix rearrangement

Fine matrix - small pores, weak gel

Coarse matrix contracts, syneresis pressure ↑

Repercussions of matrix rearrangement 1. Cheese moisture content

- Cutting early (weak set) enables much rearrangement to occur after cutting; syneresis
 ↑, cheese moisture content ↓
 - ex: alpine cheeses
- Cutting late (firm set) limits rearrangement
 after cutting; syneresis ↓, cheese moisture
 content ↑
 - ex: traditional Brie, Camembert
- É Cutting firmness should be consistent from vat-to-vat to reduce moisture variation

Repercussions of matrix rearrangement 2. Acid development

- "If the amount of time to the desired cutting firmness varies greatly from day-to-day, the subsequent rate of acidification during the rest of cheese making may be affected:
 - . Extended cutting time, ↑ starter culture population, ↑ rate of acidification
 - . Reduced cutting time, ↓ starter culture population, ↓ rate of acidification
- Therefore, both cutting firmness and cutting time should be optimized and held constant from day-today

Bottom line

- Cutting should be initiated at a consistent curd firmness that is optimized for the type of cheese being made
- The time required to achieve the target cutting firmness should be consistent from vat-to-vat across season
- In practice, this can be challenging because several factors may influence coagulation and cause curd firmness at cutting and/or cutting time to vary

Repercussions of matrix rearrangement

- " Cheese moisture content
- " Acid development during cheese making
- " Cheese yield

Repercussions of matrix rearrangement 3. Cheese yield

- Weak curds are fragile and tend to shatter during cutting
 - . fat and casein losses \uparrow , cheese yield \downarrow
 - . however, matrix rearrangement after cutting occurs rapidly, curd particles firm up quickly
- Firm curds are more forgiving with respect to shattering during cutting
 - . however, matrix rearrangement after cutting occurs slowly
 - curd particles firm up slowly and remain vulnerable to shattering for longer time after cutting

Mechanisms of coagulation

- "Rennet (rapid: 30 60 min)
- " Acid (slow: 5 24 hr)
- " Acid-rennet (slow: 12 -24 hr)
- " Acid-heat

Acid coagulation

Acid coagulation

Aggregation of casein micelles

continuous gel - coagulation

Acid coagulation

- Acid gels lack the capacity to contract and synerese
- Therefore, final cheese moisture content is very high (around 70-80%, depending of the fat content)
- In general, acid coagulated cheeses are eaten fresh, not ripened

Mechanisms of coagulation

- "Rennet (rapid: 30 60 min)
- " Acid (slow: 5 24 hr)
- " Acid-rennet (slow: 12 -24 hr)
- " Acid-heat

Key parameters of acid-rennet coagulation

- 1. Amount of rennet added to the milk:
 - Anywhere from 1 30% of the level used in rennet coagulation
- 2. Coagulation temperature:
 - Anywhere from 18 32°C

Example 1: Quark

- " Lactic fermentation at ca. 30°C for 16 hr
- A small amount of rennet (e.g., 1 10% of level used in rennet coagulation) added at around pH 6.3
- Rennet proceeds through enzymatic and nonenyzmatic phases as milk pH ↓
- Coagulation occurs at pH 4.8 or 4.9 instead of ph 4.6
- The resulting curd develops hybrid characteristics that fall somewhere between those of rennet curd and acid curd

Advantages of acid-rennet coagulated Quark

- Better draining results in a lower moisture content
- Lower moisture content along with a firmer coagulation result in a firmer cheese body, improved texture
- Higher cutting pH (e.g. from pH 4.6 to 4.8 or 4.9) results in a less acidic flavor

Example 2: soft ripened goat's milk cheese

- The milk undergoes lactic acidification at around 20°C for 24 hr
- "Rennet (about 1/3 the level used in rennet coagulation) is added, often around pH 6.3.
- The rennet proceeds through enzymatic phase but the non-enyzmatic phase is strongly impeded at 20°C,
- Coagulation occurs in 24 hr when the pH reaches around pH 5.3
- The resulting curd develops hybrid characteristics that fall somewhere between those of rennet curd and acid curd

Advantages of acid-rennet coagulation for goat's cheeses

- Syneresis is improved, resulting in a final cheese with ca. 60-70% moisture.
- This moisture range is low enough to support controlled ripening
- The end result is a group of soft ripened goats milk cheeses with a unique lactic acid dominated texture

Factors that affect rennet coagulation

- Temperature history of milk
- " pH of milk during coagulation
- Temperature of milk during coagulation
- " Ca++ ion content of milk
- " Casein content of milk

Temperature history of milk: 1. Cooling (< 10°C)

0.2 - 0.3 pH ↑

Repercussions of cooling milk to 4°C

- ″ ↑ milk pH
 - . Slower enzymatic phase
 - . ↓ attraction between rennet enzymes and casein micelles, ↑ cleavage of k-casein needed to induce coagulation
 - . Therefore, longer time needed to attain target cutting firmness
- Altered casein micelle structure
 - Curd matrix less able to undergo structural rearrangement, contraction
 - . Therefore, weaker set, slower syneresis, higher moisture content in cheese (especially in high moisture types, e.g., bloomy rind)
- May cause problems when switching from warm milk fresh from the animal to cold stored milk

Compensating for cooling milk to 4°C

- The changes can be largely reversed by normal pasteurization before cheese making
- These changes can be partly overcome by adding calcium chloride.
- If necessary, increase cutting time to restore the target curd firmness
- If necessary, adjust starter usage to restore target acifidification schedule
- If necessary, take action during cheese making to enhance syneresis/draining to reduce cheese moisture content

- " Temperature history of milk
- " pH of milk during coagulation
- Temperature of milk during coagulation
- Ca⁺⁺ ion content of milk
- Casein content of milk

pH of milk during coagulation pH ↓ from 6.7 - 6.0

Repercussions of milk pH

- ″ As milk pH ↓
 - Rennet enzyme activity increases
 - Rennet enzymes are more strongly attracted to casein micelles
 - "Therefore, the enzymatic phase occurs more rapidly
- Furthermore:
 - Rennet enzymes adsorb more tightly onto the casein micelle surface, resulting in patches+of k-casein cleavage
 - Therefore, the amount of k-casein cleavage needed to induce micelle aggregation ↓
 - Also, higher Ca++ ion concentration speeds up the aggregation of casein micelles
 - Therefore, Non-enzymatic phase occurs more rapidly
- Consequently, rennet clotting time ↓, cutting time ↓, and curd firmness ↑

- " Temperature history of milk
- " pH of milk during coagulation
- Temperature of milk during coagulation
- " Ca++ ion content of milk
- " Casein content of milk

As coagulation temperature ↑ from ca. 25° - 40 ℃

- " Enzymatic phase occurs more rapidly:
 - Rennet enzyme activity increases with ↑ temperature
- Non-enzymatic phase occurs more rapidly
 - Rennet enzymes adsorb more tightly onto the casein micelle surface
 - " Therefore, the amount of k-casein cleavage needed to induce micelle aggregation ↓
- Consequently, rennet clotting time and cutting time ↓, and curd firmness ↑

As coagulation temperature ↓ from ca. 25°-15°C

- Enzymatic phase gradually slows down but the non-enzymatic phase fails catastrophically
 - . At 20°C, the non-enzymatic phase is severely impeded and casein aggregation/curd formation occurs very slowly (many hours)
 - . This principle is exploited in the production of acid-rennet coagulated cheeses
 - . At 15°C, the nonenzymatic phase is completely prevented; casein aggregation cannot occur even when k-casein has been completely cleaved from the micelle surface
- Bottom line: coagulation temperature should be tightly controlled

- Temperature history of milk
- " pH of milk during coagulation
- Temperature of milk during coagulation
- " Ca++ ion content of milk
- Casein content of milk

Ca⁺⁺ ion content of the milk

Calcium chloride addition

- "Supplies Ca⁺⁺ ions, enables nonezymatic phase (aggregation of casein micelles) to proceed
- Decreases the milk pH, thereby stimulating the enzymatic phase
- " End result: rennet clotting time ↓, cutting time ↓, and curd firmness ↑

- " Temperature history of milk
- " pH of milk during coagulation
- Temperature of milk during coagulation
- " Ca++ ion content of milk
- Casein content of milk

As casein content ↑:

- The frequency of collisions between casein micelles increases dramatically
- This causes micelles to aggregate at much lower levels of k-casein cleavage
- End result: the nonezymatic phase is greatly accelerated: rennet clotting time
 ↓, cutting time ↓, and curd firmness

General rules of thumb

- Cut curd at a consistent firmness (for moisture control)
- Cut curd at a consistent time from rennet addition (for maintaining acidification schedule)
- " If necessary:
 - . Add calcium chloride (up to 0.02% maximum)
 - adjust cutting time to hold cutting firmness constant
 - adjust starter usage to maintain target acidification schedule

Thank You!