Milk Coagulants

David McCoy, Ph.D.
Vice President – Product Research

August 6, 2011
Agenda

- Review of history and chemistry of coagulation
- Properties of coagulants
- Use of coagulants
- So.. What kind of variety of cheese do you want to make and what make procedure are you going to use to make it?
History

- The first commercially available, standardized calf rennet was produced by Christian D.A. Hansen in 1874.

- In 1972, the FDA permitted the use of microbial coagulants as availability of calf abomasums became limited.

- In 1980’s, Pfizer, Hansen/Genencor, and DSM developed Fermentation Produced Chymosin (FPC).

- Between 2000 and 2002, FPC became increasing popular due to mad cow and hoof-and-mouth concerns.

- FPC is currently used in over 90 % of the cheese made in the U.S.

- 2008 – Introduction of ChyMAX M non-bovine chymosin
Nomenclature

- “Rennet” – Generic term for animal derived coagulant. A mixture of chymosin and pepsin.

- “Rennet Paste” – Traditionally made from calves that had just suckled so had both chymosin and pregastric lipase.

- Chymosin – The main gastric protease in young ruminants. (E.C. 3.4.23.4)(M.W.= 35,600)

- FPC – Fermentation Produced Chymosin – Chymosin produced in either yeast or fungi instead of calves.
Nomenclature

- Pepsin – The main gastric protease in adult animals including pigs, cattle, and chickens.
- Microbial – (Mucor types) from *Rhizomucor miehei* or *pusillus*
- Microbial – (Endotheia) – from *Cryphonectria parasitica*
- Cardoon (Vegetable) from Cynara (thistle)
Enzymatic destabilizing of casein micelles

Observation – Once Coagulant is added, cheese will be made.

(Dalgleish, 2007)
3D aggregation of casein micelles ➔ curd

The coagulation reaction is delayed until 60 to 75% of surface k-casein is hydrolyzed in normal milk depending on the casein concentration.
Reactions Occurring During Renneting

- CMP
- VIS
- GEL
- AT
- CT
- GT
- RT

Stages:
- Stable
- Aggregation
- Gelation
- Syneresis
Coagulant Comparison Chart

<table>
<thead>
<tr>
<th>Coagulant Type</th>
<th>Calf Rennet & Bovine Rennet</th>
<th>Fermentation Produced Chymosin</th>
<th>ChyMAX M (Chymosin, non-bovine)</th>
<th>Microbial (Mucorpepsin)</th>
<th>Microbial (Endothia-pepsin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk Clotting Enzyme</td>
<td>Chymosin & Pepsin</td>
<td>Chymosin</td>
<td>Halal, Kosher, Vegetarian</td>
<td>Halal, Kosher, Vegetarian</td>
<td>Halal, Kosher, Vegetarian</td>
</tr>
<tr>
<td>Certification</td>
<td>Limited Halal</td>
<td>Halal, Kosher, Vegetarian</td>
<td>Halal, Kosher, Vegetarian</td>
<td>Halal, Kosher, Vegetarian</td>
<td>Halal, Kosher, Vegetarian</td>
</tr>
<tr>
<td>Casein Specific Activity</td>
<td>+++ depending on enzyme ratio</td>
<td>++++</td>
<td>++++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Proteolytic Activity</td>
<td>+++ depending on enzyme ratio</td>
<td>++</td>
<td>+</td>
<td>+++ (depending on type)</td>
<td>++++++</td>
</tr>
<tr>
<td>Concerns</td>
<td>Animal Product</td>
<td>GM Host</td>
<td>GM Host</td>
<td>Reduced Yield / Bitterness</td>
<td>Reduced Yield / Bitterness (Swiss OK)</td>
</tr>
</tbody>
</table>
Effect of Coagulant on Mozzarella

<table>
<thead>
<tr>
<th></th>
<th>Chymosin</th>
<th>Mucor</th>
<th>Endothia</th>
</tr>
</thead>
<tbody>
<tr>
<td>α Casein</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>β Casein</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Proteolysis (12% TCA)</td>
<td>8%</td>
<td>7%</td>
<td>14%</td>
</tr>
<tr>
<td>Melt Diameter</td>
<td>50mm</td>
<td>50mm</td>
<td>57mm</td>
</tr>
<tr>
<td>Free Oil</td>
<td>27%</td>
<td>27%</td>
<td>35%</td>
</tr>
</tbody>
</table>

* Drain pH = 6.40 ; Stretch Temperature - Curd = 55°C
Yield Loss Compared to FPC

<table>
<thead>
<tr>
<th>Coagulant</th>
<th>Difference (kg cheese / 100 kg milk)</th>
<th>Kg Cheese / M kg milk</th>
<th>Difference in Cheese (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fermentation Chymosin</td>
<td>0.00</td>
<td>100,000</td>
<td>0</td>
</tr>
<tr>
<td>Bovine Rennet</td>
<td>- 0.08</td>
<td>99,200</td>
<td>- 800</td>
</tr>
<tr>
<td>R. miehei</td>
<td>- 0.25</td>
<td>97,500</td>
<td>- 2,500</td>
</tr>
<tr>
<td>R. pusillus</td>
<td>- 0.26</td>
<td>97,400</td>
<td>- 2,600</td>
</tr>
<tr>
<td>C. parasitica</td>
<td>- 0.52</td>
<td>94,800</td>
<td>- 5,200</td>
</tr>
</tbody>
</table>
Use considerations
Coagulant Use Instructions - Dilution

- Dilute 1:20 to 1:40 with water in a clean, sanitized container.
 - Prefer distilled or demineralized water
 - 1 quart of clean water per 1000 lb. of milk

- Chlorine
 - Rennet - 2 PPM chlorine - 40 % lost in 3 min.
 - Rennet - 5 PPM chlorine - 60 % lost in 3 min.

- pH of Hard Water > 7.00
 - Coagulants are unstable above pH 6.5.
 - CaCl$_2$ Solutions and Annatto are above pH 7

- Add enzyme to water, minimally but completely mix, add immediately to milk
Coagulant Use Instructions – Addition to the vat

- Add diluted coagulant to the vat with sufficient agitation to ensure proper distribution.
 - Typically 5 minutes

- Stop all agitation and let vat set.

- Test vat before cutting.
Coagulant Use Instructions – Cutting the vat

- Methods of Testing
 - Time
 - Finger or Knife Method
 - Rennet Cup
Factors that Effect Rate of the Reactions

- Use level
- Temperature
- pH
- Calcium Concentration - Summer milk slower firming
- Casein Concentration
- Inhibitors to coagulation – Heat Treatment & Calcium
Use considerations - coagulant strength

- FPC is typically packaged at 600 IMCU / gm. (3 mg protein / gm.). Double the strength of calf rennet.

- Coagulants are typically used at:

 ~ 1.5 to 3 oz. / 1000 lbs. Milk (45 to 90 gm. / 500 kg milk) @ single strength equivalent.
Temperature of Storage

- **Recommended 40 - 45 °F in package**
 - Contamination risk on re-use

% Loss in One Month

<table>
<thead>
<tr>
<th>Temp.</th>
<th>Rennet</th>
<th>Microbial</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 °F</td>
<td>0 %</td>
<td>0 %</td>
</tr>
<tr>
<td>70 °F</td>
<td>1 %</td>
<td>1 %</td>
</tr>
<tr>
<td>85 °F</td>
<td>3 %</td>
<td>2 %</td>
</tr>
</tbody>
</table>

Barbano, 1986
Effect of Temperature on Coagulant Activity

![Graph showing the effect of temperature on coagulant activity for Chymosin and R. miehei. The graph displays a curve where the relative activity increases with temperature up to a certain point, after which it decreases. The x-axis represents degrees Fahrenheit, ranging from 70 to 130, while the y-axis represents relative activity, ranging from 0 to 200. The graph includes markers for Chymosin (red diamonds) and R. miehei (blue squares).]
Chymosin

- Minimum Temperature for Coagulation = 50° F
- Optimum** Temperature for Coagulation = 112° F
- Maximum Temperature for Coagulation = 122° F
- 99+% inactivated in whey/ 162° F/15 sec./ pH >6.0
Effect of pH on Enzyme Activity
High Solids Milk

- All protease reactions are dependent on the enzyme to substrate ratio.

- In high solids milk (UF / MPC / Condensed) the hydrolysis of kappa casein and the coagulation reaction happen much quicker than with normal solids milk.

- In ageing of cheese made with high solids milk, the hydrolysis reactions are often slowed since the protease to casein ratio is lower than normal cheese.
The effect of breed on protein in milk

Table 1. The effects of breed on the content and yield of milkfat and milk protein.*

<table>
<thead>
<tr>
<th>Breed</th>
<th>Milk Content (%)</th>
<th>Milk Yield (lb/lactation)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fat</td>
<td>Protein</td>
</tr>
<tr>
<td>Ayrshire</td>
<td>3.99</td>
<td>3.34</td>
</tr>
<tr>
<td>Brown Swiss</td>
<td>4.16</td>
<td>3.53</td>
</tr>
<tr>
<td>Holstein</td>
<td>3.40</td>
<td>3.32</td>
</tr>
<tr>
<td>Guernsey</td>
<td>4.87</td>
<td>3.62</td>
</tr>
<tr>
<td>Jersey</td>
<td>5.13</td>
<td>3.80</td>
</tr>
<tr>
<td>Milking Shorthorn</td>
<td>3.60</td>
<td>3.20</td>
</tr>
</tbody>
</table>

Wisconsin CDR Pipeline vol. 23 # 1, 2011
Heat-Induced Changes in Milk Proteins

Native whey protein (folded) → heat → Denatured whey protein (unfolded)

Disulfide bond -s-s- → Colloidal calcium phosphate (CCP)
Syneresis

- Weaker set = faster shrink
- Cutting - Smaller curd = faster whey expulsion
- Acidification - Lower pH = faster shrink
- Cook - Higher temperature = faster shrink
Much of the data presented was courtesy of Chr. Hansen, Inc.
Acid Formation & Whey Expulsion vs. Temperature

Temperature (F)

pH at 6 Hours

Whey Expulsion

SCO 238 SCO 273 SCO 291 Whey separation

Dairy Research Institute

Nutrition • Products • Sustainability
Effect of Temperature on Coagulant Activity

![Graph showing the effect of temperature on coagulant activity. The x-axis represents degrees Fahrenheit (80 to 100), and the y-axis represents relative activity (40 to 160). Two lines are plotted: one for Chymosin (red triangles) and one for R. miehei (blue squares). The activity increases with temperature for both enzymes.](image-url)
Effect of pH on Enzyme Activity
Thank you